Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 25, 2026
-
Free, publicly-accessible full text available April 16, 2026
-
Free, publicly-accessible full text available April 9, 2026
-
Nickel-based alloys, Alloys 625 and 718, are widely used in the aerospace industry due to their excellent corrosion resistance and high strength at elevated temperatures. Recently, these alloys have been utilized to manufacture rocket engine components using additive manufacturing (AM) technologies such as laser powder bed fusion (LPBF) and powder-blown laser-based directed energy deposition (DED). These technologies offer faster and more cost-effective production while enabling the fabrication of near-net-shape parts that are subsequently joined by welding. However, solidification cracking susceptibility varies significantly between AM and conventionally processed materials, and limited weldability characterization has been conducted on AM-fabricated materials. This study assesses the weld solidification cracking susceptibility of Alloys 625 and 718 produced by wrought (mill-rolled), LPBF, and DED using transverse varestraint testing, Scheil-Gulliver simulations, the Crack Susceptibility Index (CSI), and the Flow Resistance Index (FRI). Transverse varestraint testing revealed that AM parts exhibited higher susceptibility due to the presence of larger and elongated grains in the fusion zone, affecting the weld solidification cracking response. In Alloy 625, the LPBF condition exhibited the highest maximum crack distance (MCD) of 2.35 ± 0.16 mm, compared to 1.56 ± 0.06 mm for wrought and 1.72 ± 0.10 mm for DED. Similarly, in Alloy 718, the DED condition showed the highest MCD of 2.93 ± 0.41 mm, while the wrought condition had an MCD of 2.01 ± 0.12 mm, and the LPBF condition reached 3.01 ± 0.33 mm at 5 % strain, without a clearly defined saturation strain. Although wrought materials demonstrated greater resistance to solidification cracking, solidification simulations did not correlate with the experimental testing, as they do not account for microstructural and mechanical factors, relying solely on chemistry.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Y and Nd borohydride complexes bearing 2-pyridinemethanamido ligands were synthesized, revealing a varied coordination chemistry. Nine structures were identified by X-ray diffraction, some complexes being active in the ROP of cyclic esters.more » « lessFree, publicly-accessible full text available January 21, 2026
-
To advance our ability to control the electronic properties of divalent lanthanides, the interplay between deformation densities, 4f interelectronic repulsion, and ligand field effects is discussed to predict the nature of their ground states.more » « lessFree, publicly-accessible full text available January 22, 2026
-
Treatment of the scandium(II) metallocene Cpttt2Sc (Cpttt = C5H2tBu3) with CO or the isocyanide CNXyl (Xyl = C6H3Me2-2,6) yields the carbonyl complex Cpttt2Sc(CO), 1, or the isocyanide complex Cpttt2Sc(CNXyl), 2, which were identified by X-ray crystallography. Isotopic labeling with 13CO shows the CO stretch of 1 at 1875 cm−1 shifts to 1838 cm−1 in 1-13CO. The CN stretch in 2 is shifted to 1939 cm−1 compared to 2118 cm−1 for the free isocyanide. The 80.1 MHz (28.7 G) 45Sc hyperfine coupling in 1 and 74.7 MHz (26.8 G) in 2 are similar to the 82.6 MHz (29.6 G) coupling constant in Cpttt2Sc and indicate that 1 and 2 are Sc(II) complexes. A comprehensive analysis of the electronic structures of 1 and 2 using DFT calculations is reported.more » « less
An official website of the United States government
